
J .  Fluid Meek (1985), vol. 156, p p .  55-62 
Printed in Oreat Britain 

55 

Galilean invariance of subgrid-scale stress models in 
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The modelling of the subgrid-scale stresses in the large-eddy simulation of turbulence 
is examined from a theoretical standpoint. While there are a variety of approaches 
that have been proposed, it is demonstrated that one of the more recent models gives 
rise to equations of motion for the large eddies of turbulence which are not 
Galilean-invariant. Consequently, this model cannot be of any general applicability, 
since it is inconsistent with the basic physics of the problem, which requires that the 
description of the turbulence be the same in all inertial frames of reference. 
Alternative models that have been proposed which are properly invariant are. 
discussed and compared. 

1. Introduction 
During the past decade a considerable amount of research has been conducted on 

the large-eddy simulation of turbulence. In these simulations, the small-scale 
turbulence (which is nearly isotropic) is modelled by an eddy-viscosity type of 
approach while the large-scale structures are calculated directly (cf. Deardorff 1970; 
Clark, Ferziger & Reynolds 1979; Moin & Kim 1982). The flow-field variables are 
averaged spatially with a filter function that constitutes a Dirac delta sequence as 
first proposed by Reynolds (1895). In this manner, the high-frequency Fourier 
components of the velocity in space are filtered out and the flow properties become 
more regular. 

The purpose of the present paper is to examine in more detail various models that 
have been proposed for the subgrid-scale stresses. In one such model, which has 
received much attention during the past few years (see Biringen & Reynolds 1981 ; 
Moin & Kim 1982), the Leonard stresses are calculated directly while the subgrid-scale 
cross-stresses and subgrid-scale Reynolds stresses are approximated by utilizing the 
Smagorinsky model, which is essentially an eddy-viscosity approach. It will be proven 
that the subgrid-scale cross-stresses are not Galilean-invariant, while the Smagorinsky 
model is, and hence this approach gives rise to equations of motion for the large eddies 
that are not Galilean invariant. Since the Navier-Stokes equations as well as their 
filtered form (which after modelling yield the equations of motion for the large eddies) 
do exhibit this invariance, it is clear that this model is deficient. To be more specific, 
this model is inconsistent with the basic physics of the problem, which requires that 
the description of the turbulence be the same in all inertial frames of reference. In 
order to avoid this problem, all subgrid-scale stress models must be form-invariant 
under a Galilean transformation (hence terms like the subgrid-scale cross-stresses 
which are not Galilean invariant must be modelled with terms that are equivalently 
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not invariant so that the model retains the same form in all inertial frames of 
reference). It will be demonstrated that by making a small modification in the linear 
combination model of Bardina, Feniger & Reynolds (1983) (the Bardina constant 
must be adjusted from a value of 1.1 to 1) the physical constraint of Galilean 
invariance can be satisfied identically. In addition, i t  will be shown that the older 
models of Deardorff (1970) and Clark et al. (1979) give rise to equations of motion 
for the large eddies that are also Galilean-invariant. However, these models are 
inferior to the modified linear-combination model as a result of unnecessary in- 
accuracies introduced in the modelling of the Leonard stresses (the Leonard stresses 
can be calculated directly). Additional physical constraints that subgrid-scale stress 
models should be subject to will be discussed briefly in $3 along with the prospects 
for future research. 

2. Models for the subgrid-scale stresses 

a mean and fluctuating part respectively as follows: 
In  the large-eddy simulation of turbulence, any flow variable $ is decomposed into 

$ = 3+$’, (1) 

where 3 = G(x-x’, A )  $(x’) d3d. 
D 

In (2), G is a filter function which depends on the relative position vector x-x’ in 
the fluid domain D and on the computational mesh size A .  The function G is 
normalized, i.e. 

JDG(x-x’,A)d3x’ = 1, (3) 

and is usually taken to be a Gaussian distribution in an infinite flow domain or a 
piecewise continuous distribution of bounded support otherwise (cf. Deardorf€ 1970 ; 
Leonard 1974). In the limit as A approaches zero, (2) becomes a Dirac delta sequence 
(cf. Arfken 1970), i.e. 

l imI  G(x-x’,A)$(x’)d3z’ = S(x-x’)$(x’)d3~’ 
A + O  D D 

= $(XL (4) 

where S(x- x’) is the Dirac delta function. As a direct result of the Riemann-Lebesgue 
theorem, (2) substantially reduces the amplitude of the high-frequency Fourier 
components in space of any flow variable $. Consequently, 3 can be more accurately 
termed the large-scale component of $ and $‘ the residual or small-scale field. It should 
be noted at this point that, unlike in the more traditional Reynolds averaging, 

in general. 

fluid which is governed by the Navier-Stokes equations 
We will consider the turbulent flow of a homogeneous and incompressible viscous 

auk auk - aP 
-+u - - --+vV%,, 
at laxl ax, (7) 
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where u is the velocity field, p is the modified pressure, which includes the 
gravitational body-force potential, and v is the kinematic viscosity of the fluid. 
Equation (7) is solved subject to the continuity equation 

V ’ U  = 0. (8) 

By filtering the Navier-Stokes equations (7) and continuity equation (8), we obtain 
the equations of motion for the large-scale eddies which are given by (cf. Deardorff 
1970) 

where 

are the subgrid-scale stresses. Here 
~ L - -uu  - -  

k l -  k l - u k u l ,  
- -  

c k l  = .I El +;ilk u;, 

are respectively referred to as the Leonard stresses, the subgrid-scale cross-stresses 
and the subgrid-scale Reynolds stresses. In deriving (9) and (lo), the commutative 
propcrty of the filtering process with time and space derivatives has been utilized, 
i.c. for anv flow variable a5 

It should be noted that, for (16) to hold with full rigour, the filter function G must 
vanish at the boundary of its support. Equations (9) and (10) are not closed because 
of the presence of additional unknown terms in T. Closure is usually achieved by taking 
T to be some functionalt of the global filtered velocity C, i.e. 

Tkl(x, t )  = Tkl[C(x’, t )  ; x], x’ E D .  (17)  

Specific forms of (17) that have been studied in the literature will be discussed later. 
Now we will examine the invariance of the equations of motion (7)-( 10) under the 

Galilean group of transformations, which are given by 

X* = X+ Vt+b,  t* = t (18) 

where V and b are any constant vectors. The Galilean group of transformations yield 
frames of reference whose motions differ by a constant translational velocity. Hence, 
if x constitutes an inertial frame of reference, then x* will represent the class of 
inertial frames of reference. By differentiating (18), it  is obvious that 

a 
V -  

a a a a  u * = u + V ,  --- -- - -- 
ax: - a x k ’  at* at “axk 

t I t  should be noted here that the Leonard stress L can be calculated directly so it is actually 
only necessary to provide closure models for C and R - a fact which has been made use of in the 
more recent models. 
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under the Galilean group of transformations. The direct substitution of (19) in (7) 
and (8) yields the equations 

au: au; - ap* 
-+u?: - -:+,vv*2u;, 
at* ax, ax, 

V*’U* = 0, (21) 

and hence the Navier-Stokes equations are Galilean-invariant - a fact that  has long 
been known. I n  deriving (20) we have, of course, made use of the fact that  p *  = p 
under the Galilean group (this results from the fact that the concept of force is 
frame-independent). It will now be demonstrated that the filtered form of the 
Navier-Stokes equations are also Galilean-invariant. Since the Navier-Stokes equa- 
tions themselves are Galilean-invariant, in order to accomplish this task i t  is only 
necessary to show that the filtered part of a Galilean-invariant function is also 

(22) 
Galilean-invariant. Given that 

under the Galilean group of transformations (18), then 

# * = #  

r 

3*= J G(x*-x’*) #*(x’*) d3x’*. 
D 

(23) 

However, from (18) i t  is clear that  

x*-x’* = x+ Vt+b- (x ’+  Vt+b)  = x-x’, (24) 

where I * I denotes the determinant. The direct substitution of (22), (24) and (25) into 
(23) yields the result 

$* = G(x-x’)#(x’)d3x’ = 3, (26) 
D 

which completes the proof. Since (9) and (10) are obtained simply by filtering the 
Navier-Stokes equations, as a result of (26) we have 

V*’U* = 0, (28) 
- - ~ -  

where 

and thus the equations of motion for the large eddies are Galilean-invariant, as would 
be expected on physical grounds. Consequently, the basic physics of the problem 
requires that the description of the turbulence as a whole as well as the description 
of the evolution of the large scales of turbulence (or any subset of scales for that  
matter) be the same in all inertial frames of reference. 

I n  the large-eddy simulations of turbulence by Biringen & Reynolds (1981) and 
Moin & Kim (1982), the equations of motion for the large eddies given by (9) and 
(10) are solved in the equivalent formt 

r& = ii; ii? --u: ii? -k u: ii; + ii; u;* + u;* u;*, 

Q * U  = 0, (30) 
t The purpose of this modified approach was to make use of the fact that the Leonard stress 

can be calculated directly. 
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where Tkl = Q k l -  g m r n  'k l?  (31) 

Q k l  = u; + fik u; +u; u;, (32) 

P =  p + g m m .  (33) 

59 

- - _ _  

- 
Since the correlation &-Vii on the left-hand side of (29) is calculated directly, closure 
is achieved by simply taking T to be a functional of &. In Biringen & Reynolds (1981), 
the Smagorinsky (1963) model is used in the form 

Tk. = - c, d 2 n b D k l ,  (34) 

where (35) 

n~ = D m n  D m n ,  (36) 

(37) 

is chosen, where ( * )  denotes an average over a plane parallel to the walls of the 
channel, C, is a dimensionless constant and f is a dimensionless wall damping function. 

and C,  is a dimensionless constant. Similarly, in Moin & Kim (1982), the model 

Tkl = -c2 A ~ ~ ~ _ ~ ~ ( D k l - ( D k l ) ) - f A a ~ b )  <Dkl> 

As a direct consequence of (3), (19) and (26), it ia clear that 
- -  

&* = &+ v, uf* = uf ,  uf* = uf 7 (38) 

under the Galilean group of transformations. Consequently, we have 
--- 

Q:, = u;* E: +a: u;* + u;* u;* 

= u;(gl+ 5)  + (ak + v k )  u; + u; ui 
- 

= Qk1-k V k 3 - k  &U;,  (40 1 
and hence the transformed version of the Biringen & Reynolds model (34) is given 
by 

T& = Vk G+ V, <-$ V'Z itkt -C1 A2n&* D:i, (41 1 
which is not form-invariant under a Galilean transformation. As a direct result of (39) 
and (40), it  is also quite clear that the Moin & Kim model (37) is not Galilean-invariant ! 
When (34) or (37) are substituted in (29), the resulting equations of motion for the 
large eddies that are obtained are also not Galilean-invariant. To be more specific, 
under a Galilean transformation the modelled versions of (29) and (30) take the forms 

V*'&* = 0, (43) 

F* = F+$V.J (44) 

which is not invariant, since it depends explicitly on the translational velocity V of 
the frame. In  (42) 

and p' = is the modelled version of the subgrid-scale stress T given by the 
right-hand side of (34) or (37). It is thus clear that the equations of motion for the 
large eddies that are utilized in Biringen & Reynolds (1981) and Moin & Kim (1982) 

3 FLM 156 
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are generally incompatible with the basic physics of the problem, which requires that 
the description of the turbulence be the same in all inertial frames of reference. This 
problem arises because the tensor T,  which is not Galilean-invariant, is replaced with 
an invariant expression, thus destroying the correct transformation properties of (27). 

In order to avoid this problem of obtaining equations of motion for the large eddies 
that are not Galilean-invariant, subgrid-scale stress models must be form-invariant 
under the Galilean group of transformations. Stated mathematically, closure models 
for 7 (or any part of r) must transform as 

T i z ( X ,  t )  = ‘kl[P*(x’, t ) ;  XI, X’E D (45) 

under the Galilean group of transformations and thus be of the same form in all 
inertial frames of reference. By making use of (38), it is a simple matter to show that 

- - 
Lzl = Lkt- v k  ?hi- v, Uk,  (46) 

czl = ck, + v k  + v, Uk, (47) 

RgZ = Rkl, (48) 

and hence Lzl + c& = Lk, + ck,, (49) 

‘gl  = ‘kl (50) 

- 

under a Galilean transformation. Thus, while r, f + C, and R are Galilean invariant, 
neither f nor C has this property by itself. In order to satisfy (45) in models where 
the Leonard stress L is calculated directly, the modelled version of C must have a 
Galilean variance identical with the last two terms on the right-hand side of (47). The 
Biringen & Reynolds (1981) model and the Moin & Kim (1982) model do not have 
this property, as is obvious from (41), and are thus physically inconsistent. 

Now, it will be proven that the linear-combination model of Bardina et al. (1983) 
is Galilean-invariant provided that the Bardina constant is chosen appropriately. 
This model takes the form 

(51) c - c - -  - -  
kl - r(UkU1-UkU1), 

where c, is the dimensionless Bardina constant. Closure is achieved in this case by 
simply modelling C and R, since the Leonard stress L is calculated directly. It is a 
simple matter to show that (51) and (52) transform as 

- - - - 
c,*,- Vku;-c’ ,uk  = c , ( u z u : - ~ ~ ~ ~ ) - c , ( ~ k I k ; +  vlu;), (53) 

R;, - $Rkm Sk, = - C ,  A 2 I I L *  Dzl (54) 

under the Galilean group. Hence, if we take 

c, = 1, 

CZ1 = c; q - q E;, 

it is clear that (53) reduces to the form 

(55)  

which is Galilean-invariant. It thus follows that the linear-combination model with 
c, = 1 gives rise to equations of motion for the large eddies that are Galilean-invariant. 
Interestingly enough, Bardina et al. (1983) arrived at a value of c, = 1.1 by 
correlating with data obtained from direct numerical simulations of homogeneous 
turbulence. However, in future calculations with the linear-combination model, c, 
must be modified to a value of 1. 
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Finally, it will be demonstrated that the somewhat older models of Deardorff (1970) 
and Clark et al. (1979) are also Galilean-invariant. The Deardorff model is given by 

(56) Lk, + ck, = O ,  

Rkl-$Rnam = - cl A2nbDhl, (57) 

where (56) constitutes the Reynolds-averaging assumption. By utilizing (39), (48) and 
(49), it  is a simple matter to show that the Galilean transformation of this model takes 
the form 

LZ1 + c:, = 0, (58) 

R&-$R;m&kl = -C,A2fiD*D&-, (59) 

and is thus invariant. Hence the Deardorff model yields equations of motion for the 
large eddies that are Galilean-invariant. The Clark et al. (1979) model can be written 
in the form 

Rkl -$Rm,,, &k, = - c, d2HDDkl,  (61 ) 

where (60) is obtained by a Taylor expansion. By utilizing (39), (48) and (49), i t  is 
a simple matter to show that the Galilean transformation of this model is given by 

R&-$R;,&k, = -C,A2fi)*D&, (63) 

which is form-invariant. The Clark et al. model thus gives rise to equations of motion 
for the large eddies which are also Galilean-invariant. It should be noted at this point 
that, while both the Deardorff model and the Clark et al. model are Galilean-invariant 
(and thus are physically consistent, unlike the Biringen & Reynolds (1979) and Moin 
& Kim (1982) approaches), they are inferior to the modified linear-combination 
model, since unnecessary errors are introduced in the modelling of the Leonard 
stresses. The Leonard stresses can be calculated directly, and this should be taken 
advantage of. 

3. Conclusion 
It has been proven that the models for the subgrid-scale stresses that are used in 

Biringen & Reynolds (1981) and Moin & Kim (1982) are not form-invariant under 
a Galilean transformation. Consequently, it follows that this approach gives rise to 
equations of motion for the evolution of the large eddies of turbulence that are not 
of the same form in all inertial frames of reference - a situation that is inconsistent 
with the basic physics of the problem. This difficulty arises because the subgrid-scale 
cross-stresses, which are not Galilean-invariant, are replaced through modelling with 
a Galilean-invariant term. In order to avoid this problem, any subgrid-scale stress 
models that are used must be form-invariant under a Galilean transformation. It was 
demonstrated that the linear-combination model of Bardina et al. (1983) is properly 
invariant provided that the Bardina constant is adjusted from a value of 1.1 to 1. 
It was also demonstrated that the older Deardorff (1970) model and the Clark et al. 
(1979) model are properly invariant. However, these models are not as good as the 

3-2 
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modified linear-combination model, since errors are unnecessarily introduced in the 
calculation of the Leonard stresses, as alluded to earlier. 

From the standpoint of Galilean invariance and numerical accuracy in the 
calculation of the Leonard stresses, the modified linear-combination model appears 
to be the best existing subgrid-scale stress model. However, additional research is 
needed on the effects of rigid-body rotations and their dissipative structure on 
subgrid-scale stress models. This topic will be the subject of another paper. 

The author would like to thank Professor W. C. Reynolds for some valuable 
comments and criticisms of the original version of this paper. It should also be noted 
that the result requiring the Bardina constant to be adjusted from a value of 1.1 to 
1 was discovered independently by the author and Professor W. C. Reynolds after 
this initial communication was established. 
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